Cell Theory

- 1665 - Robert Hooke
 - Describes small rooms in tree bark

- 1838-39 Matt Schleiden & Ted Schann
 - All organisms are composed of one or more cells.
 - Cells are the smallest living units of all living organisms.

- Late 1800’s Rudolf Virchow’s contribution
 - Cells arise only by division of a previously existing cell.
 - Life on earth represents a continuous line of descent

Modern Cell Concept

Cell Theory
1. All organisms are composed of cells.
2. Cells are the smallest living things.
3. Cells arise only from pre-existing cells.
4. All cells today represent a continuous line of descent from the first living cells.
5. Cells contain a mechanism for protein synthesis
Why Are Cells Small?
Small cells have an optimum surface area to volume ratio

<table>
<thead>
<tr>
<th>Cell radius (r)</th>
<th>Surface area (4πr²)</th>
<th>Volume (4/3πr³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 unit</td>
<td>12.57 units²</td>
<td>1.07 units³</td>
</tr>
<tr>
<td>10 units</td>
<td>125.7 units²</td>
<td>419.9 units³</td>
</tr>
</tbody>
</table>

Surface area to volume ratio → 3:1

0.3:1

Why Are Cells Small?

Electron microscopes resolve structures 0.2nm apart.

Light microscopes resolve structures 200nm apart.

Microscope Properties

- Magnification – “enlarge” objects
- Resolution - minimum distance two points can be distinguished as separate points
 - Light microscopes
 - Electron microscopes
 - Transmission (TEM)
 - Scanning (SEM)
 - Scanning Tunneling (STEM)

Light Microscopy

- Compound Light Microscope
- Phase Contrast Microscope
- Dark-field Microscope
- Fluorescence Confocal Microscope
All cells have certain structures in common.

1. genetic material – in a nucleoid or nucleus
2. cytoplasm – a semifluid matrix
3. plasma membrane – a phospholipid bilayer
1. Prokaryotic
 - Bacteria
 - Archaeabacteria

2. Eukaryotic
 - Plants
 - Animals
 - Fungi
 - Protists

Prokaryotic Cell Structure

- Simplest organisms – all bacteria
 - Plasma Membrane – barrier & regulates
 - Inside the Plasma Membrane
 - Cytoplasm
 - Ribosomes
 - DNA
 - Outside the Plasma Membrane
 - Cell wall – Peptidoglycan layer(s)
 - gram-positive or gram-negative
 - Capsule – Polysaccharide: Adhesion & Hydration
 - Pili - cell adhesion or DNA transfer
Eukaryotic Cell Structure

- Characterized by compartmentalization
 - Nucleus
 - Plasma Membrane
 - Cytoplasm

Plant Cell Unique Characteristics

- **Central vacuole**
 - Large compartments in mature plant cells,
 - Storage facility for water & other materials
 - Produce turgor (pressure) for cell rigidity

- **Cell wall**
 - Cellulose & other polysaccharides
 - Support of Cells, Tissues, Organs, Whole Plant

- **Chloroplasts**
 - Membranes: 2 in envelope & many internal
 - Semiautonomous: DNA & ribosomes
 - Photosynthesis
Nucleus

1. Repository of genetic information
2. Synthesis of RNA for ribosome construction for protein synthesis

Ribosomes

- Ribosomes
 - RNA-protein complexes composed of two subunits
 - Site of protein synthesis
 - Assembled in nucleoli

Ribosomes and Endoplasmic Reticulum

- Forms compartments
- Large surface area for metabolism
 - Rough ER
 - Protein synthesis by ribosomes
 - Transport
 - Smooth ER
 - Lipid synthesis
 - Detoxification
Golgi Apparatus

- Outgoing Vesicles
- Incoming Transport Vesicles

Collect, package, and distribute molecules

Endomembrane System

Lysosomes - membrane-bound digestive vesicles
Mitochondrion

- Exterior and interior membranes
- Semi-autonomous
 - DNA
 - Ribosomes
- Function: ATP synthesis
 - Energy Metabolism
 - Aerobic respiration

Mitochondrion

Cytoskeleton

- Network of protein fibers supporting cell shape and anchoring organelles
 - Actin filaments
 - cell movement
 - Microtubules
 - centrioles
 - Intermediate filaments
 - cell structure

Energy converting organelle: Mitochondrion

- Interior and exterior membranes
- Semi-autonomous
 - DNA
 - Ribosomes
- Function: ATP synthesis
 - Energy Metabolism
 - Aerobic respiration

Energy converting organelle: Chloroplast

- Two external membranes
- Internal membranes
- DNA
- Ribosomes
- Function: Photosynthesis

Cytoskeleton

- Network of protein fibers supporting cell shape and anchoring organelles
 - Actin filaments
 - cell movement
 - Microtubules
 - centrioles
 - Intermediate filaments
 - cell structure
Cytoskeleton

Amoeboid Movement

http://video.google.com/videoplay?docid=4349197081937999314&q=elodea&total=23&start=0&num=10&so=0&type=search&plindex=0

http://video.google.com/videoplay?docid=-5522357274832025243&q=mitosis&total=329&start=0&num=10&so=0&type=search&plindex=4

SEM 4,100×
LM 600×

Cilia and Flagella

Flagellum
Plasma membrane
Basal body

SEM 4,100×
TEM 206,500×
TEM 206,500×

Network of protein fibers supporting cell shape, movement and anchoring organelles

Actin subunit
Microfilament

Fibrous subunits
Intermediate filament

Tubulin subunit
Microtubule

Actin and Microfilaments
Cytoskeleton - Summary

- Network of protein fibers
 - Shape
 - Movement
 - anchoring organelles

Microfilaments - made of Actin protein
 - Cell shape & movement

Microtubules - made of tubulin protein
 - Organelle & chromosome movement

Intermediate filaments – fibrous protein
 - Structural stability