Exponentials and Logarithms in the Complex Plane
Soon and very soon, we will encounter the exponential and logarithmic functions in Chapter 12 for Math 105.  As it turns out, these functions can be extended into the Complex Plane.  I will just state a few results and leave the proofs up for those curious individuals.  Remember that a complex number z is defined as follows:  z = x + i y , where x and y are Real numbers and 
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The exponential function ez is of fundamental importance, not only for its own sake but also as a basis for defining all the other elementary transcendental functions.  In its definition we seek to preserve as many of the familiar properties of the real exponential function ex as possible.  Specially, we desire that

1. ez shall be single-valued and analytic.

2. d( ez)/ dz = ez.

3. ez shall reduce to ex when Imaginary(z) = 0.

The result of applying the above conditions, which uses the Cauchy-Riemann equations and solving a second-order differential equation, gives the following interesting result
ez = ex [cos(y) + i sin(y)] . 
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It is important to note that the right-hand side of (1) is in standard polar form.  Hence
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The possibility of writing any complex number in exponential form is now apparent, for, applying (1), with x = 0 and y = 
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 , we have
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and thus by multiplying both sides of (3) by r yields
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(4)

The fact that the angle, or argument, of a complex number is actually an exponent explains why the angles of complex numbers are added when the numbers are multiplied and subtracted when the numbers are divided.  Let me now represent a complex number geometrically.

A complex number is represented geometrically by the point P (see Figure 1) whose abscissa and ordinate are, respectively, the real and the imaginary components of the given number or by the directed line segment, or vector, which joins the origin to this point.  When used in this fashion for representing complex numbers, the Cartesian plane is referred to as the Complex Plane.
The vector OP which represents the complex number x + i y  possesses two important attributes besides its components x and y .  These are its length
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and its direction angle 
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Since (see Figure 1) x = r cos
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 and y = r sin
[image: image10.wmf]q

, it is evident that x + i y can be written in the equivalent form
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Notice that (4) = (7).  These representations provide a mechanism between the algebra and geometry of complex numbers.  This is VERY powerful in solving applied mathematical problems. 
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Figure 1.  The magnitude r, the angle 
[image: image13.wmf]q

, and the components x and y  of the complex number P = z = x + i y =  r cos
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 + i r sin
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It now turns out (I’ll skip the proof) that a logarithm of a complex number is given by
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(8)

where 
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1 is the principle argument of z, that is, the particular argument of z lies in the interval 
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Notice that the logarithmic function is infinitely many-valued.  For any particular value of n a unique branch of the function is determined, and the logarithm becomes effectively single-valued.  If n = 0, the resulting branch of the logarithmic function is called the principal value.  We have to stay away from the point z = 0 (called a branch point) and the negative Real axis (called a branch cut).  These places produce discontinuities at these places.
Now we can take the logarithm of complex numbers with (8).  We can not do this in the Real number plane.  Here is an example considering the principle branch, i.e., n =0, 
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Application
Complex exponential functions readily show up in describing wave motion.  For example, we are all familiar with water wave motions such as when you drop a rock in a pond, or when you watch the ocean waves from a beach.  In either case, you can see the wave crests and toughs as they move away or towards you.  These types of shapes can be described by sinusoidal functions, such as (1).  Another wave motion that is not so obvious is the transport of pure energy, known as electromagnetic waves.  These waves are all around us if you could but perceive them (sometimes you can, i.e., when you get sunburned).  They reflect and transmit through our bodies without us even being aware of it (most of the time).  Let me now show you how electromagnetic waves can be described by complex exponential functions.

Around 1864, James Clerk Maxwell described the wave motion of electromagnetic waves.  His equations explain how light, radio waves, and all other types of electromagnetic waves propagate.  Here are his equations
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where 
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and
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 = the Electric field, which is a function of 3-dimensional space and also time.
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= the Magnetic field, which is a function of 3-dimensional space and also time.
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 = the Electric flux density, which is a function of 3-dimensional space and also time.


[image: image26.wmf]B

 = the Magnetic flux density, which is a function of 3-dimensional space and also time.
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 = the electric charge density.
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 = the Electric current density, which is a function of 3-dimensional space.
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 = the permittivity of the material, which is a function of 3-dimensional space.


[image: image30.wmf]m

 = the permeability of the material, which is a function of 3-dimensional space.
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 = the conductivity of the material.

 c  = the speed of light in a vacuum.
Maxwell’s equations are 4-dimensional, coupled, partial-differential equations.  The 
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 is a vector partial differential operator.  If one makes a number of simplifications, such as energy traveling in space (vacuum), these equations can be reduced to what is called the “Wave Equation”.  The wave equation is a second-order partial differential equation that can be separated into its various space and time dimensions.   This can be solved using standard ordinary differential equation techniques.  What falls out is how energy travels (propagates).  At the heart of this description is the complex exponential.   For example, the following result is the real-time sinusoidal (assumed time dependence) steady state expression for the electric field x-component
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(9)
Taking the Real part of the above equation gives
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(10)
where that 
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denote the traveling wave real amplitudes, while 
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 are arbitrary phases relative to the instant t = 0 and the location z = 0 in space.  I should note, (9) and (10) describe how TV, radio, cell phone, etc. information travels (propagates) through the atmosphere, buildings, people, etc.

Without getting caught up in all the details of the above symbols, I just want to point out that (9) and (10) show that electromagnetic waves can be described as WAVES.  Furthermore, this description is possible because of the mathematical tool we call the Complex Exponential function.
One more note, electromagnetic phenomena are sometimes best handled by postulating particles (or quanta) of light.  This conceptualization is useful in some interactions with matter; for example, the photoelectric effect.  In fact electromagnetic phenomena exhibit both wave and particle natures, much like a coin having two sides.  Maxwell presented his equations, which embody the wave nature of electromagnetics, as laws.  A physical law cannot be proved, other than that it is consistent with physical observation.  
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