Number of Payments

- One
 - Simple Interest
 - Adds interest on the loan
 - Simple Bank Discount
 - Subtracts interest off the face value of the loan
 - Compound Interest
 - $FV = PV (1 + \frac{r}{n})^{nt}$
 - Amortized Loans
 - $PV = Pmt \frac{1 - (1 + \frac{r}{n})^{-nt}}{\frac{r}{n}}$
 - Annuities Sinking Funds
 - Payment at end
 - $FV = Pmt \left(\frac{1 + \frac{r}{n}}{\frac{r}{n}} \right)^{nt} - 1$
 - Annuities Due
 - Payment at the beginning
 - $FV = Pmt \left(\frac{1 + \frac{r}{n}}{\frac{r}{n}} \right)^{nt+1} - 1 - Pmt$

- Series of equal payments
 - Account History
 - Decline to zero
 - Builds from zero