Factoring the Illegal Way

Remember that the standard form of a quadratic expression is $a x^{2}+b x+c$.

Example: $\quad 6 x^{2}-7 x-3$
This is difficult to factor because the coefficient of the squared term (a) is not 1. Therefore I remove the 6 by multiplying it with the c term (-3). My new trinomial is

$$
x^{2}-7 x-18
$$

Now this trinomial is easily factored into $(x-9)(x+2)$.
I did an "illegal move," and I now need to "undo" it. Since I multiplied by 6 in the first step, to "undo" it, I now divide each constant by 6.

$$
\left(x-\frac{9}{6}\right)\left(x+\frac{2}{6}\right)
$$

I now have a factored form with fractions. That is not acceptable so I first reduce the fractions to lowest terms.

$$
\left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right)
$$

The binomials still have fractions that cannot be reduced, so I simply take the denominator of the fraction and squeeze it in front of the x in the binomial, making the denominator the coefficient of x.

$$
\begin{aligned}
& \left(x-\frac{3}{2}\right)\left(x+\frac{1}{3}\right) \\
& (2 x-3)(3 x+1)
\end{aligned}
$$

It works every time!
The only problem I have had with students using this method is they forget to undo the illegal move. You must do both steps!!!

This does not work if a is a negative number. Factor out a -1 and then proceed.

Here's another example:

$$
2 x^{2}-7 x-15
$$

Because a is not 1 , I perform the illegal move. Multiply by 2.

$$
x^{2}-7 x-30
$$

Factor using the sign clues.

$$
(x-10)(x+3)
$$

Now I must undo the illegal move. Divide by 2.

$$
\left(x-\frac{10}{2}\right)\left(x+\frac{3}{2}\right)
$$

Simplify the fractions if I can.

$$
(x-5)\left(x+\frac{3}{2}\right)
$$

Since I still have a fraction, I move the denominator of the fraction in front of the variable.

$$
(x-5)(2 x+3)
$$

One More Example:

$$
12 x^{2}+17 x+6
$$

Perform the illegal move. Multiply by 12.

$$
x^{2}+17 x+72
$$

Factor using the sign clues.

$$
(x+8)(x+9)
$$

Undo the illegal move. Divide by 12.

$$
\left(x+\frac{8}{12}\right)\left(x+\frac{9}{12}\right)
$$

Reduce fractions.

$$
\left(x+\frac{2}{3}\right)\left(x+\frac{3}{4}\right)
$$

Remove fractions.

$$
(3 x+2)(4 x+3)
$$

