The Simplex Algorithm as a Method to Solve Linear Programming Problems

Linear Programming Problem

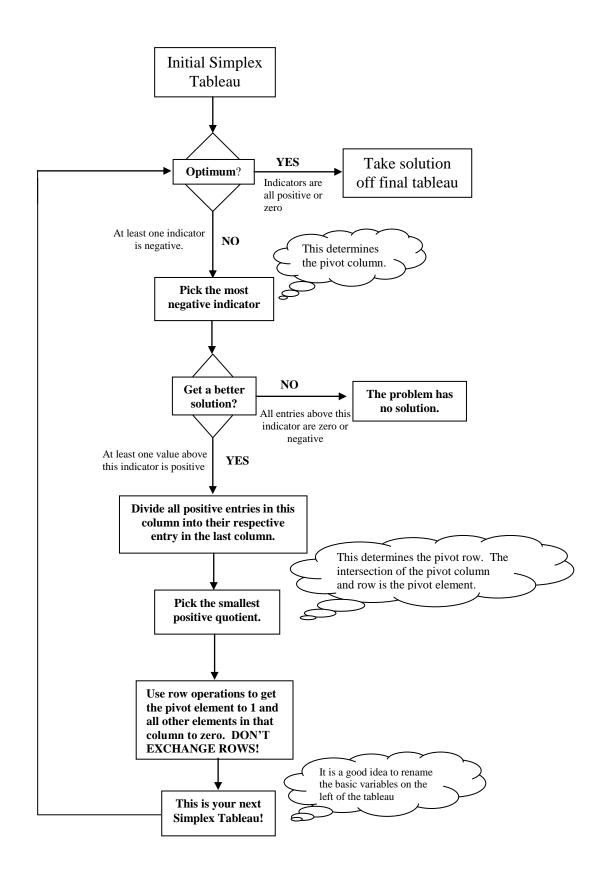
Standard Maximization problem in Standard Form	$x_{1} + 2x_{2} \le 10$ $3x_{1} + 2x_{2} \le 18$ $x_{1}, x_{2} \ge 0$ Maximize : P =		Decision variables: x_1, x_2 Constraints $(a_1x_1 + a_2x_2 + \le b_1$ where $b_n \ge 0$) Non-zero constraints $(x_1, x_2\ge 0)$ Objective function P
Fundamental Theorem		If an optimum occurs, it will occur at one of the corner points of the feasible region, or along all points of a segment whose endpoints are corner points of the region.	

Initial system: 3 basic and 2 non-basic variables	$ \begin{array}{r} x_1 + 2x_2 + s_1 \\ 3x_1 + 2x_2 + s_2 \\ -20x_1 - 30x_2 + P \\ x_1, x_2, s_1, s_2 \end{array} $	= 0	Decision variables: x_1, x_2 Slack variables: s_1, s_2 Constraints (= b where b \geq 0) Non-zero constraints (\geq 0)
Fundamental Theorem		If an optimum occurs, it will occur at one (or more) of the basic feasible solutions. These are the corner points of the original feasible region.	

Initial Simplex Tableau

	non-basic basic				
	\mathbf{x}_1 \mathbf{x}_2 \mathbf{s}_1 \mathbf{s}_2 \mathbf{P}				
Basic variables ⇒	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	$s_2 3 2 0 1 0 18$				
	$P \begin{bmatrix} -20 & -30 & 0 & 0 & 1 & 0 \end{bmatrix}$				
	indicators in last row				

Initial basic feasible solution:
$$x_1 = 0, x_2 = 0, P=0$$
 ($s_1 = 10, s_2 = 18$)



Initial simplex tableau with basic variables s_1 , s_2 , P and nonbasic variables x_1 , x_2 . Initial basic feasible solution: $x_1 = 0, x_2 = 0$, P=0 ($s_1 = 10, s_2 = 18$)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pivot column is x_2 column (indicator = -30).Entering basic variable is x_2 Pivot row is s_1 row (smallest positive quotient is 5)Exiting basic variable is s_1 Pivot element is 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Basic feasible solution: $x_1 = 0, x_2 = 5, P = 150$ ($s_1 = 0, s_2 = 8$)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pivot column is x_1 column (indicator = -5).Entering basic variable is x_1 Pivot row is s_2 row (smallest positive quotient is 4)Exiting basic variable is s_2 Pivot element is 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
All indicators are positive or zero – STOP Basic feasible solution: $x_1 = 4$, $x_2 = 3$, max. P = 170 $(s_1 = 0, s_2 = 0)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$