The Simplex Algorithm as a Method to Solve Linear Programming Problems

Linear Programming Problem

$\left.$| Standard Maximization problem
 in Standard Form | $\mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10$
 $3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18$ | Decision variables: $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots$
 $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0$
 Maximize $: \mathrm{P}=20 \mathrm{x}_{1}+30 \mathrm{x}_{2}$ |
| :--- | :--- | :--- | | Constraints $\left(\mathrm{a}_{1} \mathrm{x}_{1}+\mathrm{a}_{2} \mathrm{x}_{2}+\ldots \leq \mathrm{b}_{1}\right.$ |
| :--- |
| where $\left.\mathrm{b}_{\mathrm{n}} \geq 0\right)$ |
| Non-zero constraints $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \geq 0\right)$ |
| Objective function P | \right\rvert\,-| If an optimum occurs, it will occur at one of the |
| :--- |
| corner points of the feasible region, or along all |
| points of a segment whose endpoints are corner |
| points of the region. |

Initial Simplex Tableau

$$
\begin{aligned}
& \overbrace{}^{\text {non-basic }} \overbrace{}^{\text {basic }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { indicators in last row }
\end{aligned}
$$

Initial basic feasible solution: $\mathrm{x}_{1}=0, \mathrm{x}_{2}=0, \mathrm{P}=0\left(\mathrm{~s}_{1}=10, \mathrm{~s}_{2}=18\right)$

Initial simplex tableau with basic variables $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{P}$ and nonbasic variables x_{1}, x_{2}. Initial basic feasible solution: $\mathrm{x}_{1}=0, \mathrm{x}_{2}=0, \mathrm{P}=0\left(\mathrm{~s}_{1}=10, \mathrm{~s}_{2}=18\right)$	$\begin{gathered} \mathrm{x}_{1} \\ \mathrm{~s}_{1} \\ \mathrm{~s}_{2} \\ \mathrm{P} \end{gathered}\left[\begin{array}{ccccc\|c} 1 & \mathrm{~s}_{1} & \mathrm{~s}_{2} & \mathrm{P} \\ 3 & 2 & 1 & 0 & 0 & 10 \\ \hdashline-20 & -30 & 0 & 1 & 0 & 18 \\ \hline \end{array}\right]$
Pivot column is x_{2} column (indicator $=-30$). Entering basic variable is x_{2} Pivot row is s_{1} row (smallest positive quotient is 5) Exiting basic variable is s_{1} Pivot element is 2	$\begin{aligned} & \\ & \mathrm{s}_{1} \\ & \mathrm{~s}_{2} \\ & \mathrm{P}\left[\begin{array}{cccccc\|c} \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{2} & \mathrm{P} \\ 1 & 2 & 1 & 0 & 0 & 10 \\ 3 & 2 & 0 & 1 & 0 & 18 \\ \hdashline-20 & -30 & 0 & 0 & 1 & 0 \end{array}\right] \end{aligned}$
Basic feasible solution: $\mathrm{x}_{1}=0, \mathrm{x}_{2}=5, \mathrm{P}=150$ $\left(\mathrm{s}_{1}=0, \mathrm{~s}_{2}=8\right)$	$\begin{gathered} \mathrm{x}_{2} \\ \mathrm{~s}_{2} \\ \mathrm{P} \end{gathered}\left[\begin{array}{ccccc\|c} .5 & 1 & .5 & 0 & 0 & 5 \\ 2 & 0 & -1 & 1 & 0 & 8 \\ \hdashline-5 & 0 & 15 & 0 & 1 & 150 \end{array}\right]$
Pivot column is x_{1} column (indicator $=-5$). Entering basic variable is x_{1} Pivot row is s_{2} row (smallest positive quotient is 4) Exiting basic variable is s_{2} Pivot element is 2	$\left.\begin{array}{c\|ccccc\|c} & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{~s}_{1} & \mathrm{~s}_{2} & \mathrm{P} \\ \mathrm{x}_{2} & .5 & 1 & .5 & 0 & 0 & 5 \\ \mathrm{~s}_{2} & 2 & 0 & -1 & 1 & 0 & 8 \\ \mathrm{P} & -5 & 0 & 15 & 0 & 1 & 150\end{array}\right]$
All indicators are positive or zero - STOP Basic feasible solution: $x_{1}=4, x_{2}=3$, max. $P=170$ $\left(\mathrm{s}_{1}=0, \mathrm{~s}_{2}=0\right)$	$\begin{gathered} \mathrm{x}_{2} \\ \mathrm{x}_{1} \\ \mathrm{P} \end{gathered}\left[\begin{array}{ccccc\|c} 0 & 1 & .75 & -.25 & 0 & 3 \\ 1 & 0 & -.5 & .5 & 0 & 4 \\ 0 & 0 & 12.5 & 2.5 & 1 & 170 \end{array}\right]$

