I. Organic Molecules
 A. Energy input
 1. ATP
 2. reducing power

 B. Energy retrieval
 1. strip away electrons from chemical bonds
 2. oxidation of food molecules
 - cellular respiration
 - 2 step process (remove e- then use)

II. Glycolysis (first step)
 - in cytoplasm
 A. Splitting of glucose
 1. 10 enzyme-catalyzed reactions

 2. glucose → two 3-C molecules

 3. pyruvate

 B. Substrate-level phosphorylation
 1. transfer of high-energy Pi to ADP

 2. net gain of ____ ATP per glucose

 C. Two electrons removed and carried as NADH (will use later)

III. Oxidation (oxidative respiration)
 - mostly in mitochondria; O₂ must be present

 A. Pyruvate oxidized
 1. CO₂

 2. acetyl-CoA
 a. ATP synthesis (oxidative respiration)
 b. fat synthesis

 B. Krebs cycle (matrix reactions)
 1. acetyl-CoA stuck onto 4-C sugar

 2. enzyme-catalyzed metabolic pathway
 3. net results
 a. ____ CO₂
b. ____ e- removed in pairs
 - each pair of e- will power synthesis of 2 or 3 ATP

c. ____ ATP
d. original 4-C sugar

C. Electron Transport System (making ATP)
 1. similar to photosynthesis
 2. protons pumped out of matrix

 3. chemiosmosis
 a. ↓ [H⁺] inside matrix
 b. H⁺ diffuse across inner membrane
 - special channel protein

 4. used e- are not recycled:

 5. H₂O

D. Net results
 1. _____ ATP from complete oxidation of one glucose
 2. _____ ATP from glycolysis

E. Regulation
 - “feedback inhibition”

IV. Fermentation
A. _____________ is absent.

B. Glycolysis cannot proceed without NAD⁺
 NAD all fully occupied (NADH) if no O₂ available to accept e-
 1. animals:
 2. yeasts